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ABSTRACT. This work extends previous work [9] on fitness-dependent dispersal for a single
species 1o a two-species competition model. Both species have the same population dynam-
ics, but one species adopts a combination of random and fitness-dependent dispersal and the
other adopts random dispersal. Global existence of smooth solutions to the time-dependent
quasilinear parabolic system is studied. When a single species has strong tendency to move
up its fitness gradient, it results in a stable equilibria that can approximate the spatial dis-
tribution predicted by the ideal free distribution [9]. For the two-species competition model,
if one species has strong tendency to move up its fitness gradient, such approximately ideal
free dispersal is advantageous relative to random dispersal. Bifurcation analysis show that
two competing species can coexist when one species has only an intermediate tendency to
move up its fitness gradient and the other species has smaller random dispersal rate.

KEYWORDS: Fitness-dependent dispersal; Random dispersal; Reaction-diffusion-advection.

AMS CLASSIFICATION: 35K57, 92D25.

1. Introduction

This work extends our previous work [9] on fitness-dependent dispersal for a single species
to a two-species competition model, with one species adopting a combination of random
and fitness-dependent dispersal and the other adopting random dispersal. The model we
considered in [9] has the form

{m:v-[uVu-aqu(m,u)]+uf(x,u) in Q xRy,

-1 [bVu —auV f(z,u)] n=0 on 00 x Ry,

where R, = (0,00), and
(1.2) flz,u) =m(z) — u.

The function u(z, t) represents the density of a single species with random diffusion coefficient
i, and o measures the tendency of the species to move upward along the gradient of the
fitness of the species, measured by f(z,u). We assume that y is a positive constant and « is
a non-negative constant. {2 is a bounded region in R" with boundary 912, and n denotes the
outward unit normal vector on 8. Throughout this paper we assume that m € C*7(Q) for
some v € (0,1) and m is positive somewhere in Q, and u(z,0) is continuous, non-negative
and not identically zero in . We briefly summarize some of the main results in [9] as follows:
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e (Global existence in time) Suppose that p > 0 and o > 0. Then (1.1) has a unique
solution u € C*(§) x (0,00)) N C(€2 x [0, 00)).

e (Existence of positive steady state) If u = 0 is linearly unstable, then (1.1) has at
least one positive steady state. Note that if fﬂ m > 0, u = 0 is linearly unstable for
any > 0and o > 0.

e (Global attractor) If m > 0 in €2, then for large a/u, (1.1) has a unique positive
steady state which is also globally asymptotically stable.

To study the evolution of dispersal, a common approach, initiated by Hastings [24] for
reaction-diffusion models, is to consider models of two populations that are ecologically
identical but use different dispersal strategies. In general, using such a modeling approach
would lead to a system of the form of

ug =V - [uVu — auV f(z,u +v)] + uf(z,u+v) in O xRy,
(1.3) v =V - [vVv - PuVyg(z,u,v)] +vf(z,v+v) in Q xRy,
Vu — auV f(z,u+v)]-n=[vVu—fuVg(z,u,v)] - n=0 ondQ xRy,

where f is as in (1.2), and ¢ represents part of an alternate dispersal strategy. For example,
g = 0 would correspond to unconditional dispersal of organisms by simple diffusion, g = m
would correspond to advection up resource gradient without consideration of crowding, while
g = —(u + v) would correspond to avoidance of crowding without reference to resource
distribution. We refer to [3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 17, 23, 27, 30, 31, 32, 42, 38, 46] for
recent progress in this direction for reaction-diffusion models.

In this paper we will focus on system (1.3) with g = 0, i.e,,

u =V - [uVu — ouV f(z,u +v)] + uf(z,u+v) in ) xRy,
(1.4) vy = vAv +vf(z,u + v) in Q xRy,
LVu — auVf(z,u+v)] - n=Vv.-n=0 on 00 x Ry,

where the initial conditions u(z,0) and v(z,0) are non-negative and not identically zero in
Q, and u, v, o are all positive constants.

Theorem 1. Suppose that Q@ C RN with 09 of class C*7, m € C**7(Q) for some v €
(0,1). Then solutions of system (1.4) with bounded nonnegative initial data exist globally for
N = 1,2, and also for N > 3 provided that v > pu.

It is an open question whether solutions of system (1.4) with bounded nonnegative initial
data exist globally for N > 3 and v < .

For the rest of this section our discussion will mainly focus on non-negative and non-trivial
steady states of system (1.4). System (1.4) has two semi-trivial steady states, denoted by
(1,0) and (0, §) respectively, where @ is a positive steady state of the scalar equation (1.1),
and 6 is a positive solution of the scalar equation

(1.5) vAO+0(m—0)=0 inQ, VO-n=0 on .
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For the existence of 4, we need to assume that u = 0 is linearly unstable in (1.1). For that
to be the case, a sufficient condition is that the principal eigenvalue, denoted by A\*(u, @), of
the associated eigenvalue problem

(1.6) V- [uV¢ — apVm] +meo = —Ad inQ, [uV¢—apVm]l-n=0 on o0

is strictly negative. Similarly, 6 exists if and only if A*(v,0) < 0; Moreover, 6 is unique
whenever it exists. In particular, if fnm > 0, then 4 exists for any a > 0 and g > 0, and 6
exists for any v > 0.

System (1.4) with a = 0 has been studied in Dockery et al. [20] in the context of evolution
of random dispersal in spatially homogeneous and temporally constant environment, and the
general conclusion is that slower dispersal will evolve; see also [24, 26, 28]. In particular,
it is shown in [20] that if @ = 0, m is non-constant and p < v, then (%,0) is globally
asymptotically stable whenever (@, 0) exists. When « is positive small, the following result
can be established easily by using an approach similar to that in [20]:

Theorem 2. Suppose that m is non-constant and positive somewhere in 2.

(i) If u < v, then for positive small o, (@,0) is linearly stable and (0,0) is linearly unstable,
whenever they exist.
(i) If u > v, then for positive small o, (@, 0) is linearly unstable and (0, 9) is linearly stable,
whenever they exist.

Next we consider the case when « is sufficiently large. This case, if restricted to the single
species equation (1.1), corresponds to the scenario when the species u, at equilibrium, reaches
an approximately ideal free distribution. More precisely, if @ — 0o, % — m. uniformly in §,
i.e., the population density approximately matches the availability of resources. Therefore,
we predict that for large «, such approximately ideal free dispersal allows a population to
better track the distribution of resources so that it is likely to be more advantageous than
other sorts of dispersal strategies including random dispersal. Our next few results strongly
support this prediction.

To understand the dynamics of system (1.4), it is important to study the stability of
semi-trivial steady states (4,0) and (0,6). Biologically, the stability of (%,0) is associated
with the question of invasibility, namely, what happens when the species with density u is
at equilibrium and a small number of mutant species with density v is introduced. Can the
species with density v invade when rare? Mathematically, the stability of (&, 0) is determined
by the smallest eigenvalue, denoted by Ay (e, i, v), of the linear problem

vAY +(m -0 == p inQ, Vi nlsgq=0.
More precisely, (1, 0) is linearly stable if A, > 0 and linearly unstable if A\, < 0. The following

result addresses this issue when « is sufficiently large.

Theorem 3. Suppose that either m changes sign in Q, or m > 0 in Q and non-constant.
Then for any v and n > 0, there exists some positive constant Ay = Ai(v,n,m, Q) such that
ifa>n and afu > Ay, (G,0) s linearly stable.
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Theorem 3 ensures that if the species with density v is at equilibrium and is adopting
an approximately ideal free dispersal strategy, the species with density v, which is adopting
a random dispersal strategy, can not invade when rare. This implies that random disper-
sal compares unfavorably to an approximately ideal free dispersal strategy. It is unknown
whether the conclusions of Theorem 3 still hold in the case when m is non-negative and the
set where m is equal to zero is non-empty.

An opposite question is: if the species with density v is at equilibrium, can the species with
density u invade when rare? This question is related to the stability of (0, #). Mathematically,
the linear stability of (0, ) is determined by the smallest eigenvalue, denoted by A,(e, y, v),
of the linear problem

L7 V- [uVe —apV(m —0)]+¢lm—0] =—-Xp inQ,
(L7) Ve — apV(m — 0)] - nlaqg = 0.
More precisely, (0, 8) is linearly stable if A, > 0 and linearly unstable if A, < 0. The following
result addresses the linear stability of (0, ) for sufficiently large a.

Theorem 4. Suppose that m is non-constant and positive somewhere in . Then for any v,
there exists some positive constant Ay = Ag(v,m, Q) such that if a/u > Ag, (0,0) is always
unstable whenever it exists, where Ay > 0 is uniquely determined by

(1.8) /Q(m — §)ele(m=9 —

Theorem 4 implies that if the species with density v is at equilibrium and is adopting
random dispersal strategy, then species with density u, which is taking an approximately ideal
free dispersal strategy, can always invade when rare. This again implies that random dispersal
compares unfavorably to an approximately ideal free dispersal strategy. We conjecture that
if o is sufficiently large, then the semi-trivial steady state (%, 0) is the global attractor of (1.4)
among non-negative, not identically zero initial data. This conjecture is further supported
by the following result on positive steady states of (1.4) with large a:

Theorem 5. Suppose that function m(z) changes sign in Q. Then for any u,v, there exists
some positive constant Az = Ag(u, v, m, ) such that if & > As, system (1.4) has no positive
steady states.

It is an open question whether Theorem 5 still holds when m is non-negative in .

Given any u > v, from Theorems 2, 3 and 4 we see that, under suitable assumptions on m,
both (#,0) and (0,0) will change stability at least once when « varies from zero to infinity.
In the following we show that under certain conditions (0,8) changes its stability exactly
once as « varies from zero to large.

Theorem 6. Suppose that §) 1s conver and the Hessian matriz of m 18 negative definite for
every x € §). Then, there exists some vy = vp(m, Q) > 0 such that

(i) if v > max{wo, u}, (0,0) is linearly unstable for every a > 0;
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(i) if p > v > w, there exists a unique o* = o*(u,v,m,$Y) > 0 such that (0,6) is linearly
stable for every a € [0, &*) and linearly unstable for every a € (a*, 00).

A natural question is whether this uniquely determined o*, when it exists, is a bifurcation
point. Our next result not only gives an affirmative answer to this question but also provides
some information on the global bifurcation diagram of positive steady states.

Theorem 7. Suppose that Q is convex, the Hessian matriz of m is negative definite for
every x € Q, and u > v > 1.

(1) (Local bifurcation) There ezist some € > 0 and continuous functions o : (a* —e,a* +
€) — R and ©(s),%(s) : (—¢,€) — C*Q) such that a(0) = a*, p(0) = ©* for some
positive function ¢*, ¥(0) = ¥*, and solutions of system (1.4) near (a*,0,0) consist
precisely of (@,0,0) and {(a(s), s©(s),0 + s1(s))}, s € (—¢,¢).

(2) (Global bifurcation) Further assume that m(z) changes sign in 2. Then the compo-
nentwise positive equilibria to (1.4) which emanate from (o, 0,60) at (o*,0,6) contain
a continuum which meets (a**, 4, 0), where @ is a positive equilibrium solution of (1.1)
for a = a**.

Since ¢* > 0 in Q, (sp(s),8 + s1(s)) is a positive steady state of (1.4) with @ = a(s) for
every 0 < s < e. In other words, part (i) of Theorem 7 ensures that a branch of positive
steady states of (1.4) bifurcates from (0,0) at o = o*. Moreover, under the assumptions
of Theorem 7, by Theorem 6, o* is the only bifurcation point for (0,6). Part (ii) implies
that the branch of positive steady states of (1.4) which bifurcates from (e, 0,8) at (o*,0,0)
contains a continuum which meets the other semi-trivial steady state (a**, @, 0).

For general m, it is an open question whether there is a unique bifurcation point for (i, 0)
or (0,6). To further illuminate this issue, we turn to discuss the asymptotic behaviors of
all possible bifurcation points as 4 — oo or v — 0. Numerical simulations suggest that,
as « varies from zero to infinity, the two competing species coexist for some intermediate
interval of . More precisely, if « is the bifurcation parameter, a branch of positive steady
states bifurcates from (@, 0) at some o = o, and it connects to (0,6) at some o = a,. How
do these two bifurcation values o, and a, depend upon values of 4 and v? To address this
question, we first give precise definitions of the values o, and «,. For any g > v > 0, both
Mu(a, p,v) = 0 and Ay(a, 4, v) = 0 have at least one positive root. Let a,(u,v) denote any
positive root of A, (a, p,v) = 0 and let a,(u,v) denote any positive root of A, (a, i, v) = 0.
Simulation results suggest that for each fixed v > 0, as p becomes large, the coexistence
interval becomes wider and both ends of the coexistence interval approach infinity as 4 — oo.
This suggests that as 4 — oo, both a, and «, tend to infinity. In the following we give some
characterizations of asymptotic behaviors of o, and «, as p — co.

Theorem 8., Fiz v > 0. Then,
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(a) subject to passing to a subsequence, lim, .o c (i, v)/p = A*, where A* > 0 is chosen
such that the following system has a positive solution (u*, ©*):

Jq u*lnu

Jou*

vAY* + (m—uMe*=0 mQ, V' nlag=0.

AN (m —u*) =lnu* — in €,

(1.9)

(b) limy,—0 (1, v) /b = Ao, where Ay > 0 is uniquely determined by (1.8).

Remark 1.1. We know that A* exists and is positive, but we do not know yet whether such
A* is unique. This probably explains why it is in general difficult to show that there is at
most one bifurcation point for (&, 0).

Simulation results also suggest that for each fixed p > 0, as v becomes sufficiently small,
the coexistence interval also becomes wider and both ends of the coexistence interval ap-
proach infinity as ¥ — 0. This suggests that as v — 0, both «, and «, tend to infinity. In
the following result we give some characterization of asymptotic behaviors of oy, as v — 0.

Theorem 9. Fiz 4 > 0. Then
111’11 au(:“’ I/) = A**,
v=0 /v
where A** > 0 is the unique positive number such that the following equation has a positive

solution:
Jq minm

Jom

We are unable to determine the asymptotic behavior of o, as v — 0.

This paper is organized as follows. In Section 2 we study the global existence of solutions
of (1.4) and establish Theorem 1. The linear stability of both semi-trivial steady states are
considered in Sections 3, 4 and 6, and we prove Theorems 3, 4 and 6, respectively. Section
5 is devoted to the proof of Theorem 5, the non-existence of positive steady states of (1.4).
In Section 7 we study the local and global bifurcation diagram of positive steady states of
(1.4) and prove Theorem 7. Asymptotic behaviors of bifurcation points are investigated in
Section 8, and we prove Theorems 8 and 9 there. Finally in section 9, numerical simulation
results on various consumer-resource models are presented to suggest future directions.

2. Preliminary Results and Global Existence

We will always assume that € is a bounded domain in R" for some N. The local existence
of solutions follows from the results of [1]. Showing the global existence of solutions requires
some additional analysis. The system (1.4) is triangular and, in the terminology of [2], it
is affine in the gradient. Thus, Theorem 3 of [2] applies, so that for global existence it is
sufficient to establish that solutions on any finite interval (0,77 are bounded in L®, where
the bound may depend on T and the initial data. In fact, an extension of the results of [2]
derived in [34] that requires an L* bound on v but only an L? bound on v with p sufficiently
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large can be applied to (1.4). The system (1.4) is similar in structure to cross-diffusion
models, and it turns out that it can be treated by some of the methods developed for those
models, as we will describe later in this section. First we note that since (1.4) is a model for
population densities we are interested only in nonnegative solutions.

Proposition 1. If u and v satisfy the equations and boundary conditions of (1.4) for t €
(0,T) with u(z,0),v(z,0) > 0 then u,v >0 fort € [0,T].

Proof. From the form of the equation and boundary condition for v it is clear by the max-
imum principle [43] that if v(z,0) > 0 then v > 0 on Q x [0,T]. Let z = uel®/M-—m),
In view of the boundary condition on v, the boundary condition on wu is equivalent to
(4 + auw)du/dn — audm/On = 0 on O x (0,T]. Using this fact we can see z satisfies
z =1+ (a/p)ul{pdz + a[Vm — Vu+ Vv] - Vz

+[(@?/u)(Vm — Vu) - Vv + alAv + f(z,u,v)]z} in Q x (0,7,
% =0 ondQ x(0,T).
Since u(z,0) > 0 it follows that p+ awu > 0 for ¢ € [0, ] for some § > 0. By the form of (2.1)
it follows from the maximum principle that z > 0 on [0, 6], so u > 0 on [0, d]. Let ¢5 > 0 be
the largest value of ¢ € [0, 7] such that u > 0 for t < to. If t < T then since u(z, o) > 0
we can argue as before that z and hence u must be nonnegative for ¢ € [0, % + d] for some
§ > 0, contradicting the definition of ¢5. Thus, we must have u > 0 for ¢ € [0, 7. O

(2.1)

2.1. Normal Ellipticity in Existence and Bifurcation Theory. Before turning to the
detailed analysis of the system (1.4) we will show that the differential operator on the right
hand side has a key property called normal ellipticity. It turns out that normal ellipticity
is in some sense an optimal condition for local existence results based on semigroup theory
(see [1], p.16) and is also important as a general condition implying that certain operators
occurring in the bifurcation analysis of quasilinear systems are Fredholm with index zero (see
[44], section 2, especially Theorem 2.7 and its corollaries). Suppose that an n x n system
of linear second order differential operators on a domain © C R has principal symbol
Az, €) = Zgjzl aij(z)&:€; where a;; = (aff) is an n x n matrix for 4, j = 1... N. The system
is normally elliptic if the spectrum of the matrix A(z,&) is contained in {z € C: Re z > 0}
for all z € {2 and £ € RV\{0}. (See [1, 2, 44]. The way that the condition is formulated in
[44] is slightly different from the formulation of [1, 2] but the formulations are equivalent.)
Detailed discussions of conditions for systems to be normal elliptic, the relation of normal
ellipticity to uniform ellipticity and other ellipticity conditions, and the regularity results that
follow from normal ellipticity are given in [1, 44]. In particular, uniform ellipticity typically
requires that A(z,&) is positive definite in some sense, while normal ellipticity does not, so
that appropriate forms of uniform ellipticity imply normal ellipticity, but normal ellipticity
does not imply uniform ellipticity. It is noted on p. 2790 of [44] that the full proofs of certain
LP estimates stated in [1] are not given in that paper, but the details are provided in [44],
so the full details of Amann’s approach are available in the literature. We will verify that
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in the system defined by (1.4) the system of differential operators on the right hand side
is normally elliptic if the coefficients are evaluated for v = u(z),v = v(z) with u(z) and
v(z) nonnnegative. Before doing that we will briefly review some background on ellipticity
and existence theory for quasilinear parabolic systems. The first observation is that the idea
of normal ellipticity is important in developing existence theory for quasilinear systems of
cross diffusion type, including specifically (1.4). As noted previously, uniform ellipticity is a
more classical but stronger concept of ellipticity than normal ellipticity. Classical approaches
to existence theory use test functions or other methods to obtain what amount to energy
estimates which in turn lead to inequalities that can be used to obtain the estimates needed
for existence results; see for example [21] or [16] among many others. Those methods typically
require some form of uniform ellipticity and do not necessarily apply to normal elliptic
systems (see the comment at the bottom of p.19 of [1]). The methods used by Amann in
[1, 2] are based on properties of analytic semigroups and the theory of interpolation spaces,
and for that approach normal ellipticity is sufficient. That turns out to be important for the
study of systems such as (1.4). In [1], equations (7) and (8), Amann gives an example of a
cross diffusion system similar to (1.4) and comments on p. 16 “if we were forced to impose
the uniform strong ellipticity condition in our example (7),(8) it would not be possible to
study solutions with nonnegative initial values (uy > 0,v9 > 0) in general.” It is clear from
the work of Amann [1] and the verification of the L” estimates in [44] that normal ellipticity
is the appropriate condition for local existence results. There is an important special case
in which the estimates needed for global existence are somewhat easier, and where the
condition for normal ellipticity becomes simpler. That is the case where the principal part
of the elliptic operator, and hence the principal symbol, are upper triangular. In that case
it is possible, roughly speaking, to start with estimates for the last equation of the system,
which is coupled to the rest of the system only in lower order terms, use those to obtain
estimates for the next to last equation, and then continue work upward through the system
to obtain the necessary estimates. In the case of an upper triangular system the condition
for normal ellipticity requires only that the diagonal terms in the principal symbol satisfy
ijﬂ al (z)6:€; > 0 for all z € Q and £ € RV\{0}, for 7 = 1...n. (See [2], equation (0.2)

on p.220.) Our operator has principal part

wHau au) [Au
(2.2) ( o o ) ( Av) |
The boundary condition has principal part
p+ou oau\ (Vu-n
(2:3) < 0 v > (\71} . n) '

It follows that the principal symbol has the form
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As long as u and v are nonnegative the operator and boundary conditions satisfy the condi-
_ tions given by Amann [1, 2] for normal ellipticity. These conditions are explicated in case 3
of remark 2.5 of [44], where in the notation of [44], the principal part our system would be
defined by taking

_ [ptou au
(2.5) a(z) = ( 0 y >
and ay; = 6;; where 6;; is the Kronecker delta. Normal ellipticity follows if
ut+au+o ou
(2.6) det ( 0 i U) # 0

when o =0 or arg o € [—7/2,7/2]. The determinant is
(b + au+o)(v +0),

so since u + au > 0 for nonegative u, relation (2.6) is satisfied and hence our system is
normally elliptic. We will need to verify that certain linearized operators associated with
our system are also normally elliptic to establish the Fredholm properties needed to apply
the bifurcation results from [44]. We will do that in section 6. The analysis is similar to
what is shown here.

2.2. Global Existence. We now turn to the issue of showing global existence in (1.4). To
obtain global existence requires additional estimates, including estimates that imply uniform
Holder continuity of solutions with respect to the time variable, which are difficult to obtain
in general; see [2], p.223. However, our system (1.4) has the special feature of being upper
triangular. It is noted in [2] that for such systems it suffices to obtain L* bounds that are
uniform in time; see Theorem 3 of [2]. This result of [2] has been improved by Dung Le in
in [34] for the case of 2 x 2 systems with the triangular form

ug =V - [P(u,v)Vu + R{u,v)Vv] + F(u,v) in Q x (0,00),

(2.7) v =V [Q(u,v)Vv] + G(u,v) in Q x (0,00),
Pl,0) 2% 4 Bu, )22 = 2% — 0 on 80 x (0,00)
U,V o U, U il o ,00).

The main result of [34], Theorem 2.2, shows that under suitable hypotheses on P, @, R, F
and G (given in equations (2.2)-(2.6) of [34]), it suffices to obtain a uniform L* bound on v
and a uniform L” bound on u. It is simple to obtain L® bounds on v in triangular systems
like (1.4) and (2.7) because the form of equation and boundary condition for v allow the
direct application of maximum principles or, more generally, invariance principles. The key
issue is to obtain estimates for u. In general that is difficult to do, and in fact global existence
is still an open question if N > 3 and v < p. In some cases global existence can be shown via
methods developed by Dung Le and his collaborators. Those results, and some of the results
of [2], again exploit the triangular structure of the system. Thus, they do not require uniform
ellipticity conditions like those needed for general strongly coupled systems, for example as
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in [16]. We will discuss this point further in the remark and discussion following the next
proposition.

Proposition 2. (See [34], Theorem 2.2). Suppose that m € C**7(Q) and if N > 1 suppose
that 8 is of class C**7 for some v € (0,1). Suppose that (u,v) is a nonnegative solution of
(1.4) fort € I, where I is an interval of existence of the solution. If ||ully and ||v]|e are
uniformly bounded for t € I then so are ||ul|cr+s and ||v||gr+s for some § € (0,1).

Remark 2.1. Uniform bounds for u and v in C**° for ¢ € I imply that the solution (u,v)
can be extended to some larger interval. If for any finite interval of existence I there is some
uniform bound for u and v in C'*¢, possibly depending on I, then the solution can always be
extended, so if I is the maximal interval of existence for the solution (u,v) then I = (0, co),
that is, the solution exists globally. See [2, 34]. If there is such a uniform bound that is
independent of I and the initial conditions then solutions are in Le’s terminology ultimately
uniformly bounded, which is effectively a type of dissapativity condition that implies the
system has a global attractor with finite Hausdorfl dimension; see [34]. The case N = 1 was
also treated in [33] for a related system. See also [45] for similar results in one dimension.

Discussion. The only ways that the form of (1.4) differs from that of (2.7) are the dependence
of f(z,u,v) on z via m(z) and the presence of the advection term —aV - (uVm) in (1.4),
also arising from the dependence of m on z. The results of [34] do not require the system
to be uniformly elliptic; they require only that hypotheses (H.1) and (H.2) (equations (2.2)-
(2.6)) are satisfied. The conditions that are imposed on P, and R in hypothesis (H.1) of
[34] are that they are differentiable, their derivatives can be bounded by some powers of u
and v, and that P(u,v) > d > 0,Q(u,v) > d > 0, and |R(u,v)| < ®(v)u where ®(v) is a
continuous function. The reaction terms in (1.4) are the same as those considered in the
example in Theorem 3.1 of [34] except for the fact that m depends on z. In fact, Theorem
3.1 of [34] would apply directly to our system in the case of N = 2 if our system did not have
the z-dependent terms arising from m(z) because the hypotheses (H.1) and (H.2) would be
satisfied, and that is all that is required. It is worth noting that the systems studied by
Le and Nguyen in [35] are not necessarily uniformly elliptic because the coefficient b;; in
equation (1.4) of [35] can be arbitrarily large. We do not use the results of [35] directly, but
they illustrate that uniform ellipticity or positive definiteness are not needed for applications
of the general results of [34]. By carefully going through the calculations used to derive
Theorem 3.1 of [34] one can verify that the proof of that result extends to our system,
thus yielding global existence when N = 2. The method used in [34] uses an induction
argument to show that u is uniformly bounded in LP(Q2) for any p, then uses the bounds to
obtain estimates on the undifferentiated terms in the equations that allow the application of
parabolic regularity theory. The inductive step in bounding v is based on multiplying the
equation for u by u?~* so as to obtain a bound for ||uls, from a bound for ||u||,. The terms
corresponding to P, @, and R in (1.4) are p + au, v, and au, respectively. Those satisfy
the hypothesis (H.1) of [34] that is needed for the calculations in the inductive step. The
dependence of uf(z,u,v) and vf(z,u,v) on v and v is the same as some of forms assumed
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for F' and G in [34]. The fact that f(z,u,v) depends on z does not affect the calculations. In
our case the advection term —aV - (uVm) produces an extra term [, auVm - V(u?*"1)dz on
the right side of formula (2.21) of [34]. That term can be estimated by C [, |[Vm||{UVU|dz,
where U = wP. Since Vm is bounded an estimate analogous to (2.24) of [34] can then be
used to obtain the bound needed to continue the inductive step. The smoothness conditions
on m and 9 are used so that regularity theory can be applied as in the discussion following
(2.32) of [34]. A result similar to Theorem 2.2 of [34] is also proved in [33] for a related
system with Q C R*. That system has a slightly different form than (1.4) or (2.7) but the
key estimates are all essentially the same and extend directly to (1.4), thus yielding global
existence when N = 1.

Proposition 3. Suppose that © C R or Q C R? with 09 of class C**, and that m €
C?#MQ) for some A € (0,1). Then solutions of the system in (1.4) with nonnegative initial
data ezist globally, and in fact they are ultimately uniformly bounded in [C**°]? so that the
systemn (1.4) has a global attractor with finite Hausdorff dimension.

Proof. The bound on ||u||; obtained in Lemma 3.3 of [34] is valid in any dimension. The
remaining estimates needed for global existence for the case N = 1 are obtained in [33]. As
noted previously, the system studied in [33] is slightly different from (1.4) but all the key
estimates [33] are essentially the same as those needed to treat (1.4) and extend to that
system. (The analysis in [34] is very similar to that in [33].) For the case of Q@ C R?, the
estimates used in section 3 of [34] to obtain a bound on ||ul|s carry over to (1.4) essentially
without modification. Global existence then follows from Proposition 2 and the results and
methods of [2] as in [34]. Furthermore, the bound obtained in section 3 of [34] and the
analogous bound in the one dimensional case that follows from the analysis in [33] imply
ultimate uniform boundedness, which as noted in the remark following Proposition 2 implies
the existence of a global attractor. U

For @ ¢ RN with N > 2 we do not have a general proof for global existence. However,
global existence can be shown for v > p by adapting some ideas from [35]. The results of
[35] do not seem to extend directly to (1.4) because of the terms involving advection along
Vm but part of the proof can be modified to obtain estimates on ||u||, for any p.

Proposition 4. Suppose that Q C RN with 0Q of class C***, m € C?**Q) for some
A€ (0,1), andv > pin (1.4). Then solutions of the system in (1.4) with bounded nonnegative
initial data exist globally.

Proof. We first observe that by the form of the second equation in (1.4), the maximum prin-
ciple (and more general invariance principles) imply ||v||o < C on the interval of existence
for some constant C' depending only on m and the initial data. Thus, we need only bound
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the L" norm of u. If H(u,v) is a smooth function then we can use (1.4) to compute

2dt

L d / H(u,v)%dz = / (HHyu; + HHyvy)dz
Q
= —f VH - {H,[(1+ cu)Vu+ auVv — auVm] + Hy[vVo]}dz
Q

- / H{VH, [(p+ auw)Vu+ auVv — auVm]+ VH, - vVv]}dz
Q

+/ H[Hyu+ Hylfdz.
)

Le and Nguyen [35] treated systems of the form (2.7) and observed that an optimal estimate
for the integral corresponding to the one on the second line of (2.8) can be obtained by
choosing H to satisfy

(2'9) RH, = (P - Q)Hv;
see equations (3.3) and (3.4) of [35] and the related discussion. In our case solving (2.9) with
P = p+au, @ =v,and R = au leads to H(u,v) = h(u+v+-ylnu) where v = (u—v)/a and

h is any smooth function. For the present purpose it is convenient to take h(z) = exp(kz)
where k > 0 is a constant to be chosen later, so that

(2.10) H(u,v) = exp(klu + v + ~vinul),
and hence

=k X
(2.11) VH(u,v) =kH [(1+u) Vu+Vv] .

With this choice of H we have

/ VH - {H,(px+ auw)Vu+ auVv — auVm] + H,[vVu]}dz

(2.12) f

= /(u +au)|VH]? — k(u — v -+ au)HVm - VHdz,
0

where we have used (1 + l)au = (¢ — v + au). Note that
u

(2.13) VH, =k (1+1) vH - <f“%> HVu and VH, = kVH.
U U
Thus
/ H{VH, (4 + au)Vu+ auVv] + VH, - vVv]}dz
Q
(2.14) = / k(u+ au) HVH - [(1 + 1) Vu + vfu] dz
0 u

- / %Hz [(4 + au)|Vul® + auVu - Vv] dz.
Q
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Since g+ au =v + (1 + %) ou we ﬁave

(p+ au)|Vul]® + auVu - Vo = v|Vul? + auVu - [(1 + 1) Vu + Vv]
(2.15) u
= v|Vul|? + cuVu - v
- R

It follows that for &k sufficiently large

/QH{VHU |(p+ ou)Vu + auVv] + VH, - [vVu]}de
(2.16) = /(u+au)|VH]2da: - /ﬂ lﬂiIiHZ]Vu[zdx - [z %HVU -VHdz
| > ; (/ (1 + ow)|VH|*dz — /Q %HZ]VUIZCZQ:> .

Fixing a sufficiently large value of & we can use (2.12) and (2.16) in (2.8) to obtain
/ H(u,v)%dz < ——§/ (1 + cu)|VHdz + = / A’YVHZIV |2dz
2 di 2
(2.17) + / k(p — v+ auw)HVm - VHdz + / auHVH, - Vmdz
Q Q
+/H[Huu,+va]fdx.
Q

The hypothesis v > 1 implies that v < 0. The first integral on the second line of (2.17) can
be estimated as

/ E(p—v+ au)HVm - VHdz < /(u+au)(e[VH]2+C’eH2)da:

(2.18) @ @

6/ (;H—cvu)]VH]Zd:c+/(C’E,5+5u2)H2dm‘
Q )

where C. s depends on «, 1, v,m and k. Using (2.13) the second integral on the second line
of (2.17) can be written as
(2.19)
/ quHVH, - Vmdz = / auHk (1 + 1) VH - Vmdz — /
Q Q u

9}

(sz) HVvu - Vmdz.

The first integral on the right side of (2.19) is identical to the integral on the left in (2.18)
and can be estimated in the same way. The second integral on the right side of (2.19) can
be estimated as

g 2 2
(2.20) —/ (’“0‘7> HVu - Vmdz < C, +e/ HVul
Q

U a u?
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Finally, in the last integral on the right in (2.17) we have
H[Hwu+ Hoy|f = kH?[y +u+v][m —u — ]

(2.21) SkHz Ibc_%(u»F,U)Z} SCHZ—g'U,zHZ.

By using the hypothesis that v = (4 — v)/a < 0 and the estimates in (2.18), (2.20), and
(2.21) with ¢ and ¢ taken to be sufficiently small, we can conclude from (2.17) that for some
constants C, Cs,

1i/sza: S—/(u+au)]VH]2dm—l~C'1+C’z/H2da:

(2.22)
S Ol +Oz/ szfL',
Q

where the constants C; andCj depend on the initial data, m, and the parameters in the
system (1.4). We can conclude that on any finite interval 0 < t < T', we have [ H%dz < C
for some C depending on the initial data, T, Cy, and Cy. Since ||v||s is bounded and H(u,v)
grows exponentially in v as u — oo, it follows that ||u||, is bounded on [0,T] for any p.
Taking p = N, we have global existence of solutions to (1.4) by Proposition 2. O

Remark 2.2. It may be possible to apply other methods of obtaining global existence for
cross-diffusion systems, for example those developed in [15, 40, 47], to the system (1.4), but
the structure of the nonlinear diffusion terms in the systems considered in those works is
different than in (1.4). It is worth noting that the system treated in [47] includes advection
along a fitness gradient as well as cross diffusion. It may also be possible to adapt methods
developed to treat chemotaxis models as in [45]. These are topics of interest for future
research.

3. Stability of (4, 0) for Large a/u

This section is devoted to the proof of Theorem 3.
Recall that @ is a positive solution of

{V'[uVﬂ—aﬂV(m—~ﬂ)]+ﬂ{m—ﬂ]=O in Q,

(3.1) [wVT - otV (m —4)] - nlan = 0.

The stability of (%,0) is determined by the smallest eigenvalue, denoted by A.(a, p,v), of
the linear problem

vAY+(m—a)Y=-M inQ, Vi nlsg=0.
We first recall the following result [9] concerning the profile of % for sufficiently large c.

Lemma 3.1. For any positive solution @ of (3.1), @ — m, weakly in H' and strongly in L?
as a/p — oo. Furthermore, for any givenn > 0, if a > 1 and a/p — oo, & — my in C7(S)
for some v € (0,1).

If one further assumes that m > 0 in §Q, then for any givenn > 0, if a > n and a/u — o0,

then @ — m in C*(Q); Moreover,
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(1) if a/pp — o0 and o — oo, we have

Jqminm

Jam

(3.2) — Inm

uniformly in 0.
(2) if a/p — o0 and a — & € (0,00), then

(3.3) (G —m) — B — lnm,

uniformly in Q, where 1 is the unique solution of

(3.4) GAD + aVw - V(lnm) =0 — Inm  in Q, %% =0 on Q.

The following two results will play important roles in later analysis.

Lemma 3.2. Suppose that m > 0 in Q. Then

(3.5) /m Inm > famlg{lﬂlnm,

and equality holds if and only if m is a constant function.

Proof. We first make the following claim: For any continuous function gA,
(36) [a-9e =0,
Q

where the equality holds if and only g =g, where g = [, 9/I9|.
To establish our assertion, for 7 € R, define

h(r) = /Q (g - )eo.

Then,

B [l gpeens
,,_

with equality if and only if g = §. Therefore, if g # g, we have h(1) > h(0). Since A(0) =0,

we have
/(g - -g—)eg-§ > Oa
0

which implies (3.6). This proves our assertion.

Rewrite (3.6) as
Jo g
ged > CAVE AN P
/a 121 Ja
Now choose g = Inm, we see that (3.5) holds, and the inequality is strict if m is not a
constant. This completes the proof. ]
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Lemma 3.3. Suppose that m > 0 in €, m is a non-constant function. Then, for ¥ given
by (3.4),

(3.7) /Q(zb —lnm)dz > 0.

Proof. Rewrite the equation of w as

(3.8) av - [mVw] = m[w — lnm] in Q, g—: =0 on 99.

Multiplying the above equation by e™® and integrating the result in €, we have
/Qme““-’[u? —lnm| = d/ﬂme‘i’lvwlg >0,
where the last inequality is strict since 1 is non-constant as m is non-constant. In particular,
(3.9) /Q e~@=lmllg _ nm] > 0.
Given any 7, define the function F'(n) by

Fln) = / &M= (15 _ ).
0

Since
F'(n) = —/ 7@l (1 Inm)? < 0,
Q

we have F'(1) < F(0), i.e.,

(3.10) /Q (@ — Inm) = F(0) > F(1) = /Q &= (=10 (5 _ Irym).

It is clear that (3.7) follows from (3.9) and (3.10). O

Proof of Theorem 3. We argue by contradiction. Suppose that there exist 7g > 0 such
that, passing to some sequence if necessary, for @ > ng and «/p — o0, the smallest eigenvalue
(denoted by ;) of the linear eigenvalue problem

—vAY +Y(—-m+a) =y inQ, g—%z()onaﬂ

is non-positive. We choose corresponding eigenfunction ¢/, such that ¢; > 0 in Q and
V1l = 1. Without loss of generality, we may assume that either & — oo or a — & €
(0,00). Since 0 < @ < maxgm (Corollary 3.2, [9]), we see that |y;] is uniformly bounded,
ie., || < C for some positive constant C' which is independent of 4 and «. Since @ and
1, are uniformly bounded, by standard elliptic regularity [22] we see that ||1:1]w2s(q) is
uniformly bounded for any p > 1. By Sobolev embedding theorem [22] and ||& — my|s — 0
(Lemma 3.1), we may assume that ¢; — ¥ in C?, where VU is a weak solution of

0
on

VAV + (=m +my)¥ = AT in Q, o _ 0 on 012,
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¥ > 0in Q, and ||¥]je = 1. Note that A < 0 since 7; < 0. There are three cases for our
consideration,

Case 1. m changes sign. For this case, m — m. is non-positive and non-trivial. Hence,
A > 0, which is a contradiction.

Case 2. m >0 in Q, a — 0o and a/p — oo. Since ||[%1]le = 1 and m — m, = 0, we see
that ¥ =1, i.e., ¢ — 1. Integrating the equation of ¢, in 2, we have

(3.11) vl/wl =/w1(ﬂ—-m>

Since ¥, — 1 uniformly and (o/p)(d —m) — [, minm/ [y m — Inm (Lemma 3.1), we have
I }ifﬂ mlnm Ja 1nm}
a/pa—co [ fQ m ]QI

where the last inequality follows from Lemma 3.2. In particular, v; > 0 for sufficiently large
o and a/u, which is again a contradiction.

Case 3. m > 01in Q, a/u — oo and @ — & > 0. As in the previous case, we have P — 1
uniformly, and (a/u)(% —m) — @ — Inm (Lemma 3.1), where 1 is the unique solution of
(3.4). Therefore,

lim 710‘[91 lim / —a—(ﬂ —m) = /(zb —lnm) > 0,
a/p—co,a0—a b a/p—oo,a-i Jo b Q
where the last inequality follows from Lemma 3.3, again a contradiction. 0

4. Stability of (0,0)

This section is devoted to the proofs of Theorems 4 and 6. Theorem 4 is proved in Lemma
4.2, and Theorem 6 is a consequence of Theorems 2 and 10.
Recall that 6 is a positive solution of

(4.1) vAG+0(m—6)=0 inQ, VO nloga=0,

and it is unique whenever it exists. The stability of (0,8) is determined by the smallest

eigenvalue, denoted by A,(a, p,v), of the linear problem
(49) V- [uVe —apV(m —0)]+¢lm—60] = =g in Q,
' 1V — apV(m —0)] - njoa = 0.

Define
F(n) = / e 6), 7> 0.
0

Lemma 4.1. There exists a unique n* > 0 such that F\(n) > 0 if n > n* and F(n) < 0 if
n<n.

Proof. The proof was essentially given in Proposition 2.1 of [18]. Since

F'(n) = / e"(m“g)(m -6)?>0,
Q
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so F' has at most one root. Note that

- 2
F(O)z/(m—&)z—z/ %g:——z/ WGZI < 0.
Q Q Q

Since m — ¢ is positive somewhere in 2, we see that lim,_.. F(1) = +00. Hence, F(n) =
has exactly one positive root, denoted by n*. In particular, Fi(n) > 0if n > n* and F(n) <
ifn<n*.

0o o

Lemma 4.2. If a/p > 1%, then A (a, p,v) <0, i.e, (0,0) is linearly unstable.

Proof. Set p = e~(¢/Mm=0 in (4.2). Then p satisfies

(43) { uv - [e(a/u)(m-e)vp] + /B0 (1 6)p = — Ay (e, p, )@/ Wm0y in Q)
Vp - nlaq = 0.

Dividing the first equation in (4.3) by p and integrating in €2, we see that

' ' . [ola/u)(m—0)
)\v(a, Lh y) / e(a/ﬂ)(m-—G) — _/ e(a/u)(m——@) (’I’I’L . 9) _ 'u/ v {e H VP]
9] 9) 7] p

o ' 0|Vl
Y /e(a/u)(m 0lVP©

(u) “ 2
< —F(5) < ~F(rt) =0,

where the last inequality follows from assumption a/p > n* and Lemma 4.1. O
The following result shows that under suitable conditions A, is strictly monotone in o:

Theorem 10. Suppose that ) is convex and the Hessian matriz of m(z) is negative definite
for every x € §). Then there exists some vy > 0 such that if v > vy, then A, is strictly
monotone decreasing for all o > 0.

Set
V(z):=m-—0.
By (4.3), p > 0 also satisfies
o}
(4.4) puAp+aVV -Vo+Vop+Ap=0 in Q, é-glaﬂ =0,

Lemma 4.3. For any o > 0,

A5 0Ny Ja ele/mV 7 p . YV
(4.5) P Joe@nvg

Proof. In the following we denote dp/0a by p' and similarly for A,. Differentiate (4.4) with
respect to a, we have

a /
(4.6) plp' +VV -NVp+aVV -V + Vi +Ap+Ap =0, 5%'60 =0.
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Rewrite (4.6) as
VA [e(a/u)va'] + /WYY . Vp + e(a/u)VVp/ + )\Lpe(a/u)V + )\ve("‘/“)v/)’ =0,

(4.7) op
o100 = 0.

Multiplying (4.7) by p, (4.3) by g/, subtracting and integrating in §2, we find that (4.5)
holds. |

It is clear that Theorem 10 follows from Lemma 4.3 and the following result.

Proposition 5. Suppose that §) is convez and the Hessian matriz of m(x) is negative definite
for every x € §2. Then there exists some vy > 0 such that if v > vy,

/ @Y 5. TV >0
Q
for every o > 0 and every p > 0.

To establish Proposition 5, we first prove the following lemma.

Lemma 4.4. The following holds:

/ e(o‘/“)vprVV :/ ele/m)v [/»LIVQPP _ V]Vp[2 _ )\UIVplz]
(48) /® ?

_H / et Lo g / /Y (V)T . V2V . V.
2 aa 5n v}

Proof. Differentiate (4.4) with respect to z; and write the result in vector form:

(4.9) pA(Vp) +aV2V - Vo4 aVip-VV + pVV +VVp+ A\Vp =0,

where V2V denotes the symmetric matrix (Vaiz,), ie. the Hessian of V. Multiply (4.9) by
el®/mV' p (take inner product of vectors) and integrate the result in  we have

/ e(a/u)vap VYV
0

(4.10) =—)\U/B(a/“)v]v,o|2—,u/e(a/")VVp-A(Vp)“a/e(“/“)v(vp)T-VzV'Vp
Q Q Q

- a/ V()T V2. YV — / /By |y p|?
Q Q

Multiply the identity
1
[V20l* + V(Ap) - Vp = SA(IV])

by el®/MY and integrate the result in €2, we have

/ e(a/M)VV(Ap) -Vp
Q

(4.11) 1 0 a
= —/e(“/“)V]VZpIZ—I——/ e("‘/“)Vm]Vplz——/e("‘/")v(VV)T'Vzp-Vp.
Q 2 Jo on wJa
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Hence, equation (4.8) follows from equations (4.10) and (4.11). O
Lemma 4.5. The following holds:
(4.12) [ e Wil = VIVoP = AlVlt) 20,
Q

Proof. By (4.3), A, can be characterized as

Jo &M [u| VY — V]
= in 5 .
peW2(Q) Ja®
Choose the test function ¢ = pg, for every 1 <4 < n, we have

/Qe(a/u)V {.UJIVPmIQ - V]pmi’z - )‘U‘pxilz] = O’

and summing up 4 from 1 to N, we see that (4.12) holds. O

Ay

The following results belongs to Casten and Holland [12] and Matano [41].
Lemma 4.6. Suppose that Q is convez. Then
9 o 2
= <
5. Vol <0
on 0%2.

Proof of Proposition 5. By equations (4.8) and (4.12) and Lemma 4.6,
(4.13) /e(“/“)VprVV > "Qfe(a/“)V(Vp)T-VZV.Vp.
Q2 Q

As 0 — gy Jgm in C?(Q)) when v — co and V?m is negative definite for every z € {, there

exists some vy > 0 such that if v > 1y, V2V = V2m — V20 is negative definite for every
z € 2. This completes the proof of Proposition 5. O

5. Non-existence of Positive Steady States for Large «

This section is devoted to the proof of Theorem 5, which is a corollary of Lemma 5.5. To
this end, we first establish a few auxiliary results.

Lemma 5.1. For any componentwise non-negative equilibrium (u,v) of (1.4), u(z) < maxgm
for every x € €.

Proof. Set

(5.1) w = ue~(@/Bf(@utv)

Then w satisfies zero Neumann boundary condition and

(5:2) uV - [y 4 uf(z,u4+v) =0  in Q.

Let w(z,) = maxgw for some z, € (. Rewrite the equation of w as
puAw+aVyf -Vw+wf(z,u+v)=0 in Q.



RANDOM DISPERSAL VERSUS FITNESS-DEPENDENT DISPERSAL 21

Then by the maximum principle (cf. Lemma 2.1, [39]),

(53) m(xa') - u(ma’) - U(ma) > 0.
By (5.3) we have

maxgw = 'LU(CCQ) = @"(0‘/“)[m(m&)“”(xa)_”(za)]u(ma)
(5.4) < u(za)

< m(zq) < maxgm.
By the definition of w, we have

(5.5) u(z)e@/Mm@-u @@ < maxm
Q

for every x € Q. If u(%) > maxgm for some %, then m(zZ) < u(Z). This along with (5.5)
implies that

1)
which contradicts our assumption u(Z) > maxgm. Hence, maxgu < maxgm. O

Lemma 5.2. For any p > 1, |[v|lwes is uniformly bounded for non-negative equilibria of
(1.4) and for all« > 0 and p > 0.

Proof. By the maximum principle, v(z) < maxgm in Q. By Lemma 5.1 and LP estimates
[22] we see that ||v]|w2» is uniformly bounded. O

Lemma 5.3. For any positive steady state of (1.4), ||ullm is uniformly bounded for alloe > 0
and > 0.

Proof. Multiplying the equation of u by f(z,u -+ v) and integrating in §2, we have

u/ IVu|2+oz/u]Vf|2+/'LLf2=u/ Vu-Vm—M/Vu-Vv.
Q Q Q Q Q
By Lemma 5.2 and Cauchy-Schwartz inequality we see that
(5.6) f‘-/ Vul? + cv/ WV fP + / wf? < Ci,
2 Jq Q Q

where C > 0 is some constant independent of o and p. In particular, fﬂ |Vul?> < C. Since
1 is also uniformly bounded, this proves our assertion. O

Lemma 5.4. For any positive equilibria of (1.4),

(5.7) /Q (m—u—), < X0l
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Proof. Let w be defined as in (5.1). Dividing (5.2) by w and integrating in €, we find that

(a/u)f 2
/ e(a/u)ff - “’/vb/ € N <0
Q

Q w?

It is easy to check that ye(®®¥ > (a/p)y? for y > 0, and yel®/M¥ > —p/a for every y € R.

Hence,
0> / @/ § 4 / el f > & / 2= B,
{r>0} {f<0} K J{f>0} o

2
/ 2 < Elal.
, {20} o
By Hélder inequality, we have

. 1/2 1/2
- 2 1/2 _ 2 1/2 < H
[re= (o) one= ([ 7)< Hay

Lemma 5.5. Suppose that m(z) changes sign in Q2. For anyn > 0, there exists some positive
constant C = C(n) (independent of a, ) such that if > n and a/p > C, then system (1.4)
has no positive equilibria.

Therefore,

a

Proof. To prove the non-existence of positive equilibria, we argue by contradiction. Suppose .
that there exists 7 > 0 such that a > ng, &/p — 00, and (1.4) has positive steady states. By

Lemmas 5.2 and 5.3 and Sobolev embedding theorem [22] we may assume that as o/ — oo,

passing to a sequence if necessary, u — u* weakly in H' and strongly in L?, and v — v* in

W2 weakly and strongly in C*7(€2) for some non-negative functions u*, v*, where p € (1, c0)

and v € (0,1). By Lemmas 5.1 and 5.2, we see that u*,v* € L*°(Q). In particular, v* is a

non-negative weak solution of

(5.8) vAv* +o*(m—ut—v")=0 inQ, %ln =0 on 90Q.

Since u*,v* € L®(f), by elliptic regularity [22] we have v* € W2P(Q) N C*(Q) for every
v€(0,1) and p> 1.
Passing to the limit in (5.7), we have

/(m—u*—v*)+ = 0.

Q

Since both u* and v* are non-negative functions, we have

(5.9) u*(z) +v*(z) > me(z) ae in

We consider two different cases:



RANDOM DISPERSAL VERSUS FITNESS-DEPENDENT DISPERSAL 23

Case 1. v* # 0. For this case, by the strong maximum principle [43] we have v* > 0 in Q.
By (5.9) we see that m —u* —v* < 0in Q and m —uv* —v* < 0 in {z €  : m(z) < 0}.

Hence,
/v*(m—u*—’u*)z/ v*(m~u*~—v*)+/ v*(m —u* —v¥)
Q {zeum(z)>0} {zeftm(z)<0}

g/ v (m —u* —v*) <0.
{zeft:m(z)<0}

On the other hand, integrating (5.8) in €,

/v*(m~u* - v*) =0,
o)

(5.10)

which contradicts (5.10).

Case 2. v* = 0. Hence, v — 0 as & — o0. Set ¥ = v/||v||eo. Passing to a subsequence if
necessary, by elliptic regularity and Sobolev embedding theorem [22] we may assume that
¥ — v** in C, where v** is a non-negative weak solution of

(5.11) VAU v (m—u*) =0 inQ, Vu™ . nlsg =0.

Since v* = 0 a.e., we have u* > m, a.e. in {). By the same argument as in Case 1, we see that
the only non-negative solution of (5.11) is v** = 0, which is contradiction since ||[v** || = 1.
This proves that system (1.4) has no positive equilibria when m changes sign. D

6. Existence of Positive Steady State: Bifurcation Approach

This section is devoted to the proof of Theorem 7. The local bifurcation result is a
consequence of Theorem 11 and Lemmas 6.1, 6.2 and 6.3. The global bifurcation part is
established at the end of this section.

6.1. Local Bifurcation. We first state a version of the well known local bifurcation theorem
of Crandall and Rabinowitz [19] from simple eigenvalues. We will also use a recent result by
Shi and Wang [44] that provides a global bifurcation result under the hypotheses of the local
bifurcation theorem together with some additional conditions. Let X and ¥ be two Banach
spaces.

Theorem 11. Let V be an open connected subset of R x X and (Ao, 7o) € V. Let F be a
continuously differentiable mapping from V into Y. Suppose that
1. F(A\ zo) =0 for (A zg) € V.
2. Dy F'(N ) exists and is continuous in some neighborhood of (A, To).
3. Both the kernel and range of Dg(Ao, zo), denoted as N(Dg(Ao, o)) and R(Dy( N, z0)) are
one-dimensional, and R(Dy(Xg, zg)) is closed.
4. Dy, F(A z)(wo) & R(Dyz( Ao, o)), where wy spans N(Dy(Xo, zo)).

Let Z be any complement of N(Dgy(Ag,z0)) in X. Then there exists some ¢ > 0 and
continuous functions A : (—€,€) — R and € : (—e,€) — Z such that A(0) = 0 and £(0) =0
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and F(A(s), To + swp + s£(s)) =0, s € (—¢,€). Moreover, the set F~*(0) = 0 near (Ao, Zo)
consists of precisely the curves {(\, zo)} and {(A(s),zo + swo + s£(s)), s € (—¢,€)}.
For the case  C RY we require 52 to be of class C® and define
X =W (Q) x W*P(Q),
Y = LP(Q) x LP(Q) x WI~VPr(9Q) x W-1/Pr(9Q),
V ={(a,u,v) € (6,1/0) x X 1 u> -Q%’U > -0},

where p > N, § > 0 is small. Recall that for p > N, W?P(Q) embeds in C'7(Q).

For the local bifurcation analysis we could replace X and Y with X = C*7(Q) x CH (D),
where C37(Q) := {u € C?*'(Q) : Vu nlsg = 0} and ¥ = C7(Q) x C7(Q) x C1(0Q).
However, we will need to work in Sobolev spaces so that we can use the results of [44] for
the global bifurcation analysis.

Define F(a,u,v) = (F, Fy, F3, Fy), where

Fi(a,u,v) =V [pVu — auV f(z,u+v)] + uf(z,u+v),
Fyla,u,v) = vAv +vf(z,u + v),
Fs3(a,u,v) = [pVu — auV f(z,u +v)] - n,
Fy(a,u,v) = vV n.
Since we take p > IV it is clear that F' is smooth. By direct calculation,
V- [pVe — apV(m — 0)] + o(m - §)
vAY +1p(m — 20) — Gy
[V — apV(m — )] - n
vV -n

D) Fl(aumy=(e,0,0) (0, %) =

Lemma 6.1. Suppose that § is convex and the Hessian matriz of m is negative definite for
every ¢ € §). There ezists some vy = vo(m, Q) > 0 such that if v > vy, Dww)Fl(a00) i
invertible for any a < o, and at o = o, N(Dww)F|ar00)) i one-dimensional.

Proof. (¢,%) € N(Dww)F|(a0,) if and only if the linear problem
V-V —apV(im—0)]+e(m—-60)=0 inQ,
vAYp +p(m —20) —0p =0 in Q,
Vo —apV(m—-0)] - n=Vi¢-n=0 ondQ

has non-trivial solution. By Theorem 6, we see that if @ < a*, the problem
V- uVe —apV(m—0)]+e(m—6)=0 inQ,

{ Ve —apV(m—6)]-n=0 on 09
has only trivial solution ¢ = 0. Hence, 1 satisfies

vAY +P(m—20)=0 inQ, V¢Y-n=0 on 0.
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Since the operator vAY + ¥ (m — 260) with zero Neumann boundary condition is invertible,
we see that ¢ = 0. Hence, if & < o*, D) F'|(a0,0) is invertible.
For oo = a*, the problem

V. [uVe—a*oV(im—0)]+e(m—0)=0 in,
Ve —a*eV(m—0)]-n=0 on o

has a positive solution, denoted by ¢*, which is uniquely determined by maxg ¢* = 1. Since
the operator vAY + 1(m — 26) is invertible, we see that

N(Duw)F l(a» 0,0)) = span(e®, "),
~ where ¥* is the unique solution of ‘
VAY* + 4" (m —20) — 0" =0 inQ, V¢*-n=0 ondQ.

This completes the proof. (]

(6.1)

Let p > 0 be a principal eigenfunction of the adjoint problem of (6.1), i.e., p satisfies
(6.2) pAp+a*V(im —0) - Vp+(m—-0)p=0 inQ, Vp-nlsq =0,
or equivalently,
(6.3) uv - [e(“*/“)(m“e)Vp] +pe@ /W= (m ) =0 inQ, Vp-n|sg =0.
It is straightforward to check that
o= Oe~(a*/#)(m'—9)(p*
for some positive constant C.

Lemma 6.2. Suppose that Q2 is convez and the Hessian matriz of m is negative definite for
every ¢ € (). There exists some vy = vg(m, Q) > 0 such that if v > vy, then

R(Dww)Flar00) = {(hl, ha,G1,92) €Y : / hip =/ glp}.
iy an

Proof. Given any (hi,ha,91,92) € Y, (h1,h2,91,92) € R(Dwuw)Fl(a*0,0)) if and only if there
exist (f1, f2) € X such that D) F(a00)(f1, f2) = (b1, ha, g1, g2), which, due to the invert-
ibility of the operator vAy 4 1(m — 26), is equivalent to solving the equation

V- [uVfi =o' iV(m =)+ fi(m —0) = h, inQ,
WVfi—a*fiVim—0) - n=g onodQ.

Set fi = e~(@"/ #m=0) ¢, Then (6.4) is equivalent to
e [em‘/”)(m"’)vfl} + fre@ /=0y gy = p in Q,

(6.4)

(6.5) .
e /1) (m=0) (V.fl . n) =g, on o

By the Fredholm alternative for a single equation and (6.3), (6.5) is solvable if and only if
Jalip = Joq 910 O
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Remark 6.1. It follows from the characterization of R(D,v)F(ax06)) in Lemma 6.2 that
R(D(uw)F|(ar0,0)) is closed and one dimensional, so Lemmas 6.1 and 6.2 imply that hypothesis
3 of Theorem 11 is satisfied and Dy ) F'|(a*0,6) is Fredholm.

Lemma 6.3. Suppose that ) is conver and the Hessian matriz of m is negative defi-
nite for every x € §). There exists some vy = vo(m,) > 0 such that if v > vy, then
DQD(U,U)FI(Q*;Oﬂ)((p*’"p*) g R(-D(u,v)F](a*,O,@))'

Proof. From the proof of Lemma 6.1, N(Dy4)F|(a*0,6)) is one-dimensional and spanned by
(¢*,¢*). Hence,

-V [p*V(m - 0)]
0
Da'Duv F o* *; ) =
() Fl(ar,00) ("5 ") S V(m—0)
0
From Lemma 6.2 we see that Do D) Fl(a0,0) (% ¥*) & R(D(uw)Fl(ar0,0)) if and only if
(6.6) L9 vm=6)= | pevim=0)n 0

Since

/ p"V(m — 6) 1 = / V- (0p"V (m — 0))
N Q

= _/QSD*V,D -V(m—-0)+ /QpV "V (m —0)],
(6.6) is equivalent to
(6.7) /an*Vp -V(m—8) #0.
Since ¢* = pel®/Mm=8) /' for some positive constant C, (6.7) is equivalent to

/Q (0" /1)m=0) 7 5 . 7 (m, — 6) £ 0,
which holds due to Proposition 5. ]

Remark 6.2. Lemmas 6.1, 6.2 and 6.3 verify the hypotheses of Theorem 11 and hence prove
the local bifurcation result in Theorem 7.

6.2. Global Bifurcation. The paper [44] by Shi and Wang gives conditions under which
the hypotheses of Theorem 11 imply a global bifurcation result. The following result is a
combination of Theorems 4.3 and 4.4 of [44].

Theorem 12. Suppose that the hypotheses of Theorem 11 are satisfied and that in addition
1. DyF(\x) exists and is Fredholm for all (\,z) € V, and D, F(X, xzo)is continuously
differentiable with respect to A for all (A\,zq) € V,

2. the norm function z v ||z|| on X is continuously differentiable for any z # 0, and
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3. if (M, z), (A, zo) € V then for any k € (0,1), the operator kDyF (X, z) + (1 — k) D, F(A, o)
s Fredholm.

Let T = {(A(s),z0 + swy + s£(s)),s € (0,¢)} and T'™ = {(A(s),zo + swo + s£(s)),s €
(—€,0)}. Then Tt and T'~ are contained in C, where C is a connected component of S with
S ={(\z) e V: F(\z) =0,z # zo}. Let C* be the connected component of C\I'"
containing I'" and let C~ be the connected component of C\I'" containing I'". FEach of C*
and C~ satisfies one of the following: (i) it is not compact in V, (i) it contains a point
(As, o) with A # Ao, or (143) it contains a point (N, zo + 2z) where z # 0 and z € Z, where
Z s as in Theorem 11.

We first establish two auxiliary results.

Lemma 6.4. Given any A > 0, there exist some positive constants C = C(A) and v =
v(A) € (0,1) such that for any positive steady states of (1.4) with0 < a < A, |[ullceny < C
and |[v]|czain) < C.

Proof. Since ||u||r~ and ||v||z~ are bounded (Lemmas 5.1 and 5.2), by elliptic regularity
theory [22] we see that for any p > 1, |[v|lw2s(n) is uniformly bounded for o > 0. By
the Sobolev embedding theorem [22], ||v]|¢rr(n) is uniformly bounded for o > 0 and any
7 € (0,1). Set w = e~(@/Mf vty Then w satisfies

(6.8) pV - [e/MfEuIg Y L y(m —u—v) =0 in Q, —g—% =0 on 0.

Since ||u||z= and ||v||z~ are bounded, f and w are bounded for 0 < a < A. By De Giorgi-
Nash estimate up to the boundary (cf. Lemma 5.1, [37]; Theorem 6.44, [36]), there exists
some v € (0,1) such that ||w|/cvgq) are uniformly bounded for 0 < o < A. Define h(y) =
e@/mvy. Note that h(u) = wel®W™=) - As |lw||or gy, m € C*(Q2) and ||v]|c1(q) are uniformly
bounded, [|A(u)l|cvq) is uniformly bounded for 0 < o < A. Since h is smooth and A'(y) > 0
for y > —u/a, we see that ||ullgv(n) is uniformly bounded for 0 < o < A. By the Schauder
theory [22], ||v]|cz~(qy is uniformly bounded for 0 < o < A. Furthermore, ||f(-,u + v)llcv@y
is uniformly bounded for 0 < @ < A. By the Schauder theory for second elliptic operator
with the divergence form (cf. Theorem 2.8, [25]), ||w|lcrv(qy are uniformly bounded for
0<a<A Asm e C*Q) and ||v||cr(q) are uniformly bounded, ||A(u)|| g1 (s are uniformly
bounded, which in turn implies that ||u||c1+(g is uniformly bounded for 0 < o < A, so
1 f(-,u +v)|lcrr(my is uniformly bounded. Rewrite (6.8) as

(6.9) pAw+aVf - Vo+wm—-—u—v)=0 inQ, %%:0 on 9.
By the Schauder theory [22] we see that [|wl||ce~(g) is uniformly bounded for 0 < o < A,
from which it follows that |lu||geq(qy is uniformly bounded for 0 < o < A. O

Remark 6.3. For precise statements of global Holder estimates for conormal derivative
problems, we refer to Lemma 5.1 of [37] for elliptic equations and Theorem 6.44 of [36] for
parabolic equations. The proof of Lemma 5.1 of [37] can be found in Chapter 10 of [29], pp.
466-467.
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Lemma 6.5. Suppose that p > v. There exists some ag > 0 small such that if 0 < a < ag,
(1.4) has no positive steady states. ‘

Proof. We argue by contradiction. If not, suppose that there exist {(ay,ug, vg)}52,; with
ap — 0+ as k — oo, and uy > 0 and v, > 0 are equilibria of (1.4) with & = . By Lemma
6.4, passing to a limit we may assume that (uy, vg) — (ug, vp) as k — oo, where ug > 0 and
g > 0, and

pAug + ug(m —ug —v9) =0 in Q,

vAvg +vg(m —ug —vp) =0 in Q
with Vug-n = Vyg - n = 0 on 9Q. Since 4 > v, by [20] we cannot have both ug > 0 and
vo > 0. Either we have (ug,vo) = (6(1),0), or (ug,vp) = (0,8(v)), or (ug,ve) = (0,0). If
up = vg = 0, divide the equation of vy by |[vk||L~ and pass to a limit (via a subsequence if
necessary) to get vg/||vg|lLee — v* > 0in Q as £ — oo, where v* satisfies

(6.10) vAV*+mu*=0 inQ, Vv -n=0 ondf.
Multiply (6.10) by 6(v) and integrate to get

/01)*92(1/) =0

which is a contradiction. When ug = 6(x) and vg = 0, v* satisfies
vAV +m -0 =0 inQ, Vv'-n=0 ondQ.

That is, the smallest eigenvalue of the operator —vA + (—m + 0(u)) with respect to zero
Neumann boundary condition is equal to zero. So 1/v is the principal eigenvalue for

—Ap=A(m—-0(p)p inQ, V-n=0 ondN.

However, the equation of 8(u) tells us that this eigenvalue is 1/u, a contradiction.
If ug = 0 and vy = 0(v), divide the equation for uy by ||uk||e. Since a term of the form

/ ch-ak-—%—V(m~uk—-vk) -
, o) “uknoo

as k — oo for any test function ¢ € C*(Q) (since oy — 0), we get u* > 01in Q, Vu* - n =0
on 0f) with

pAu* +u*(m—0(v)) =0
which is a contradiction (the argument is similar as the case ug = 6(u) and vo = 0). O

Proof of (ii), Theorem 7. Hypothesis 2 is satisfied because we are working in a suitable
Sobolev space; see [44]. To verify the Fredholm properties in hypotheses 1 and 3 we can
follow the analysis in example 4.2 of [44], which treats a cross-diffusion system with structure
somewhat similar to our model. The key issue is to verify that the linear operators in those
hypotheses satisfy suitable structure and ellipticity conditions. It turns out that those condi-
tions involve only the principal parts of the operators and boundary conditions, that is, the
terms in each operator or boundary condition involving the highest order derivatives. The
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principal part of the differential operator in Dy, F'(c, u,v) arising from linearizing (F, Fy),
applied to (wq, wy), is

u+au au) [Auy
e (o ) (8.
The boundary condition has principal part
p+aoau au) [(Vwn
612 (s ) (T )

These forms fit the structure shown in case 3 of remark 2.5 of [44], where in the notation of
[44],

(6.13) o(z) = <uJB au au>

14

and ay; = 0;; where dy; is the Kronecker delta. It then follows by Theorem 2.7 and Corollary
2.10 of [44] that D, F (), z) is Fredholm provided that

p+out+o  ou
(6.14) det( 0 V+U> # 0

for (o, u,v) € V when ¢ =0 or arg o € [-7/2,7/2). The determinant is
(b +au+o)(v +0),

so since g+ au > 0 on V/, relation (6.14) is satisfied and hence D,F(), z) is Fredholm for
all (A, z) € V, as needed for hypothesis 1.

The analysis for hypothesis 3 is similar. The principal part of kDgF'(A, z)+(1—k) D, F(), zo)
evaluated at z = (uy,v;) and zg = (ug, v2), applied to (wy,w,), is

(6.15) p+ (1 —k)ovw + kaug (1 — k)au; + kaug\ [ Dw,

' 0 v Dwy )
The principal part of the boundary condition is
(6.16) g+ (1 —k)au + kauy (1 — k)au; + kaug\ [Vw; -n

) 0 v Vws -n)’

By the definition of V' we have au; > —u/2 for ¢ = 1,2 so that p + (1 — k)au; + kauy > 0.
It follows as in (6.11)~(6.14) that kD, F'(\,z) + (1 — k)D.F'()\, 7p) is Fredholm of index 0
so that Theorem 12 applies to our system. It follows that the positive component C* of the
solution branch bifurcating at o = o* must satisfy one of the alternatives in the theorem.
Alternative (ii) is impossible because of the uniqueness of a*. We have no yet specified which
complement of N(DgF'(Ag, Zo)) we want to Z to be. Recall that N(DyF (A, o)) is spanned
by (¢*, ¥*) where ¢* > 0 in . We may choose

(6.17) Z = {(u,v) € X : / up*dz = 0}.
‘ Q
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It follows from (6.17) that if (u,v) € Z then u must change sign. If alternative (iii) holds
then since zo = (0, §) it must be the case that there are solutions on C* for which u changes
sign. For points on C* sufficiently close to (a*,0, ), we have u > 0. Thus, on C*, if (iii) holds
then the minimum of u changes sign on C*. Since X ¢ C(Q)2, the function G(u,v) = mingu
is continuous on X, so since CT is a connected component there must be a point (e, g, vg)
on C* with min(ug) = 0. Let w = e~ (*/#){m—u—w)y Then w satisfies

AR [e(a/“)(m‘”‘)_”O)'Vw] + wele/Bm—ww) (i gy — ) =0 inQ, Vw-nlgg=0

with mingw = 0. By the strong maximum principle, w = 0, so ug = 0, which implies
that alternative (ii) holds in Theorem [44]. Alternative (ii) is ruled out by the uniqueness
of the bifurcation point o*. Thus, alternative (i) must hold. By Theorem 5 and Lemma
6.5, (1.4) has no positive steady states for & < ap and « > Az. In the definition of V, let
6 < 3min{op, 1/A3}. Then component positive steady states of (1.4) along C* cannot meet
{6} x [W2P(Q))* and {1/8} x [W2P(Q)]*. If (@,u,v) € C* NV and u > 0 and v > 0, by
Lemma 6.4, u and v are uniformly bounded in C%7(2) norm for some vy € (0,1). Thus, to
satisfy alternative (i), there must be some point (o, u,v) € CtNV such that either u changes
sign or v changes sign. The case when u changes sign can be ruled out in the same way
as before by applying the function G(u,v) = mingu. Therefore, the only possibility is that
v changes sign. Since X C C()?, the function H(u,v) = minguv is continuous on X, so
since C* is a connected component, there exists some (a**, u**, v**) such that o** € (4,1/6),
uw™* > 01in , v > 0 in © and ming v** = 0. By the strong maximum principle, v** = 0 in
Q. This implies that u** is a positive steady state of (1.1) with a = a**. O

7. Asymptotic Behaviors of Bifurcation Points
This section is devoted to the proofs of Theorems 8 and 9.

7.1. Proof of Part (a), Theorem 8. We first establish the following result, which classifies
the asymptotic behavior of A,(a, i, v) when a — oo, a/u — oco.

Proposition 6. Suppose that m > 0 in Q. Suppose that o — 0o, a/p — co.

1) If we further assume that o/ (u/v) — 0, then

l
/\u(amu’al/)'g - fﬂmnm
5 Jam

il) If we further assume that o/(u/v) — n for some n € (0,00), then

—max Inm < 0.
Q

/\u<a7MaV) ' g - )‘*7
L

where A* is the smallest eigenvalue of

l
0
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iit) If we further assume that a/(p/v) — oo, then
: l
)\u(a,#,y).g_)ww_}_/lnm>o_
H fgm IQ] Q

Proof. Set A = Ay(, i, v) - (/). Then X is the smallest eigenvalue of the problem
Ap+ 2@ —myp =3 inQ, Vi nlag=0.
plv T
We first establish part (i). Given any € > 0, by Lemma 3.1 we have that if o and a/u are
sufficiently large,

(0%

Jo minm Cm—e< g(ﬂ—m) < Jominm
fnm H fnm

in Q. Let ). denote the smallest eigenvalue of the problem

—Inm -+ ¢

o ml
2 Ap [u -—lnm+e} v=Xp mQ, V¥ nls=0.
w/v Jom
By the comparison principle of principal eigenvalues, A < ). It is well known that
[
lim A, = min [M — Inm+ e] )
225-0 Q Jom
Hence,
) - . [ Jominm
Hmsup A < min | =*x—— —lnm + €| .
55 =0 9 J; oM

Since € is arbitrary, letting ¢ — 0 we have

~ minm
limsup A < min {fﬁ—m — lnm} .
7750 L o™

Similarly, we can show that

o]

liminf A > min

;7;—»0 Q

This completes the proof of part (i).

For the proof of part (ii), since W

we see that A is also bounded. We first normalize the positive eigenfunction 1 such that

maxq 1 = 1. By standard elliptic regularity and Sobolev embedding theorem we may assume

that, passing to a subsequence if necessary, ¥ — ¢ in C?(Q) and A — ) as ﬁ% — 7 and

— 7 € (0,00) and (a/u)(%— m) is uniformly bounded,

o, a/p — oo, where o and A satisfy

l .
A+ [Lfﬁ%ﬁ i} mm] o=3p InQ Ve nlg=0
Q
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Since ¢ > 0 and maxg ¢ = 1, we see that X must be the smallest eigenvalue. Hence, A = \*.
Since the convergence is independent of the choice of sequence, we see that part (ii) holds.
The proof of part (iii) is similar to that of (ii), so we omit it. O

Lemma 7.1. Fiz v > 0. Then, a,(p,v)/u is bounded as p — oo.

Proof. We argue by contradiction. Suppose that a,(u,v)/p — oo as g — oo. Hence,
a,, — 0o. By Part (iii) of Proposition 6, we see that

[
A(au,u,,,).?z».)&.”ﬂ_”l_%/mmm,
L me ] { Q

where the last inequality follows from Lemma 3.2. However, this is a contradiction as
Mo, 4, v) = 0. O

Proof of part (a) of Theorem 8.
Set w = e~(@w/m(m=%)g Then w satisfies
uV - [e(a“/“)(m—ﬂ)V’w] + /Wm0 iy =0 inQ, Vw-nlsg=0.

Since @ is uniformly bounded (see [9]), a,/u is bounded (Lemma 7.1) and p4 — oo, by
standard elliptic regularity, we may assume that, passing to a subsequence if necessary, w
converges to some positive constant, denoted by C (and thus @ — u* for some u*), and
o,/ — 7} such that

e Mm=vy* = ¢ in Q,

(7.1) / w(m - ut) =0,
o)
VAP + (m—u")p*=0 inQ, ¢*>0 inQ, Ve nlgg=0.
If 7 = 0, then u* = [, m/|Q|. This implies that ¢* satisfies
(7.2) vAY" + (m — / m/IQDe* =0 inQ, ¢*>0 inQ, Ve nlsgg=0.
Q
Dividing (7.2) by ¢* and integrating in {2, we have
*|2
o [ S50
a (¢*)

which implies that ¢* is a constant. By (7.2) we see that m = [, m/|Q|, which is a contra-
diction. Hence, > 0.
Rewrite the first equation of (7.1) as

—ij(m — u*) + Inu* = InC
and substituting it into the second equation of (7.1), we find that

w*lnu*
Ja

InC = =2
fn“*
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Therefore,

In particular, this implies that 7 > 0 and »* > 0 satisfy

N Jq utinu*
A(m —u*) = Inu* — =m——i,
(7.3) Jou
vAY* + (m—u)p*=0 inQ, Ve* nlsg=0.
This completes the proof. |

7.2. Proof of Part (b), Theorem 8. It follows from Lemma 4.2 that a,(p,v)/n < n*
Passing to some subsequence if necessary, we may assume that o,(u,v)/p — 7 for some
7> 0 as 4 — o0. Note that by definition of a,{u,v), the equation

uV - [elee/mtm=0gy) 4 ele/Bm=0(m _ 0w =0 inQ, Vw- nlsgg=0

has a positive solution with maxgw = 1. By standard elliptic regularity, we see that as
@ — oo, w — 1in L. Integrating the equation of w in §2, we find

/ el /mm=0) (1 _ )y = 0.
Q
Passing to the limit in the above equation we have

/ "m0 (m — 9) = 0;
o

i.e., F(7) = 0. Hence, by Lemma 4.1 we see that 7 = n*, that is, a, (s, v)/p — n* as p — oo.
This completes the proof. [

7.3. Proof of Theorem 9. We first show that o, (y,v) — oo as v — 0. If not, suppose
that c,(u,v) is bounded and we shall reach a contradiction. Set w = e~(@=/Wm-8g_ Since
@ is uniformly bounded in L®, we see that [|w||ze(q) is also uniformly bounded. Note that
w satisfies

pv - [elee/m=Dgy] 4 G(m — @) =0 in 9, Vw-nlse =0.

By standard elliptic regularity, passing to a subsequence if necessary, we may assume that
w — w* and a, — o such that w* is a positive solution of

AV [e(“*/”)(m'“*)Vw*] +u*(m—u)=0 inQ, Vw- n|pgg=0,

where w* = e~(@"/W{m=v")y*  Since m is non-constant and [, u*(m — u*) = 0, we see that
m — u* must change sign in 2. Recall the equation

VA"/HLIP(m—ﬂ) = ")\u(a'nuﬂ V)?l’ in Q: VQP '”]aﬂ =0.
Similar to the proof of part (i) of Proposition 6, we can obtain

linz.) Ao, g, v) = mf%n(m —u*) <0,
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which contradicts Ay(aw, 4, v) = 0. Hence, oy, — o0 as v — 0.
Next, we rewrite the equation of ¢ as

au

pfv

Since a,/p — oo and a, — oo, we can apply Proposition 6 to conclude that the only

possibility is that o, /(p/v) — 7, where 7 is some positive number such that the following
equation has a positive solution:

Aw+%(m—&)w=0 inQ, V- nlsq = 0.

!
—FA + [W - an] v=0 mQ, V- nl=0.
Jam

By Lemma 3.2 we have

/ [fﬂml”m - tom| >0,

Jam

Since [, mlnm/ [, m — Inm is negative somewhere in (2, the existence and uniqueness of
such positive 7 follows from standard theory for principal eigenvalue for indefinite weight
functions [6]. O

8. Numerical Simulations

In this section we assume that 2 = (0,1) and numerically investigate the effect of fitness-
dependent dispersal in four types of models: (i) System (1.4); (ii) A two species competition
model in which both species adopt random dispersal and fitness-dependent dispersal; (iii)
A two consumers-one resource model in which both consumers move upward along the re-
source gradient but the resource species does not move; (iv) A tri-trophic predator-consumer- :
resource model in which both consumers move upward along the resource gradient but the
predator and the resource do not move. Our simulation results suggest that for models (i),
(ii) and (iii), selection favors stronger advection along the fitness gradient and slower random
dispersal, while the opposite can occur for the model (iv). Our results may yield some insight
into the evolution of dispersal in food chains, e.g., the presence of predation risk seems to
have much larger impact on the evolution of dispersal strategies of consumer species than
the presence of resource species.

8.1. Coexistence Region in (1.4). We consider the following two cases.

Case 1. Fix p = 1 and decrease v = 0.1,0.01,0.001. The corresponding coexistence inter-
vals for o are summarized in Table 1. These results suggest that as v — 0, the coexistence
intervals become wider, and both ends of the coexistence interval tend to infinity as v — 0.
This is in agreement with Theorem 9.

Case 2. Fix v = 0.1 and increase 4 = 1,2,5,10,20. The corresponding coexistence
intervals for a are summarized in Table 2. These results suggest that as 4 — oo, the
coexistence intervals become wider, and both ends of the coexistence interval tend to infinity.
These results agree with Theorem 8.
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TABLE 1. Coexistence region: p =1

v | Coexistence region for o
0.11]]0.83, 0.89]
0.01][5.1,9.7]
0.001 | [18.9, 98.6]

TABLE 2. Coexistence region: v = 0.1

u | Coexistence region for o
111]0.83, 0.89]

2| [1.734, 1.889]

5| (4.47, 4.87
10 | [9.04, 9.85
20 (18.2, 19.8

8.2. Fitness-dependent Dispersal. We consider the scenario when both competing species
adopt random dispersal and fitness-dependent dispersal as follows.

ur = (puy —ou(m —u—v)),+ufm—u—v) n0<z<1,t>0,
(8.1) v = (Vug — Bu(m —u —v)g)s+v(m—u—v) n0<z<1,t>0,

pug —ou(m —u—v)y =vu, — fo(m—u—v), =0, z=01,1%t>0,
where u,v, o, f are positive constants. Our numerical results suggest that the following
holds: When a = £, u survives and v dies if 4 < v, u dies and v survives if u > v; When

= v, u dies and v survives if o < [, and u survives and v dies if & > (. In other words,
selection favors stronger advection along the fitness gradient and slower random dispersal.

8.3. Consumer and Resource Model. We performed numerical simulations on the fol-
lowing one-resource and two-consumer model

Ri=R[r(z)(1 - R/K(z)) — 010} —apCy] InO0<z<1,t>0,
(Ch)i = Ci(e1aa R = dy) + [11(Ch)e — BiC1Rs), in0<z <1, t>0,
(Ca): = Cs (e2a2R — dp) + [2(Ch)z — B2CR,], in0<z <1, t>0,
p1(C1)z — BrC1Ry = pia(Co)z — B2CaRy =0, z=0,1, t>0,

(8.2)

where R = R(z,t) and C; = Ci(z,t) (i = 1, 2) represent the density of a resource species and
two consumer species, respectively. Our numerical results suggest some similar phenomena
as those observed in model (8.1). Namely, assume that all parameters are the same except £,
and (s, then the competitor with the larger advection rate always drive the other competitor
to extinction; If all parameters are the same except w4, and usg, then the competitor with the
smaller random dispersal rate always drive the other competitor to extinction.
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8.4. A Tri-trophic Model. We also considered a three-trophic level food chain model of
the form
(Ry=R[r(z)(1 - R/K(z)) —a1C1 —agCy] in0<z<1,t>0,

(Ch)e =Ci(e10R — dy — oq P) + [ (Cr)z — F1C1Rs], iInO0<z <1, t>0,
(8.3) (Cy)r = Cy (egagR — dy — 0 P) + [12(Ca)y — 2CaR,], inlO<z <1, t>0,

P, = P(fionCy + foanCy—d,) nO0<z<1, t>0,
| 11(Ch)z — B1C Ry = 19(Ch)e — FoC2R, =0 2 =0,1, t >0,

T

T

where the model consists of one resource species, two consumers and a top predator. The
top predator feeds on two consumers and both consumers feed on the resource species. The
two consumers move, but the top predator and the resource species do not. Our numerical
results for (8.3) suggest something different from previous models. Namely, assume that all
parameters are the same except [ and g, then the competitor with the smaller advection
rate drives the other competitor to extinction; If all parameters are the same except u; and
L2, then the competitor with the larger random dispersal rate can drive the other competitor
to extinction.
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